UNIVERSIDAD TECNOLÓGICA NACIONAL

FACULTAD REGIONAL LA PLATA

DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIDAD DOCENTE BÁSICA FÍSICA

LABORATORIO DE FÍSICA

CÁTEDRA: FÍSICA I

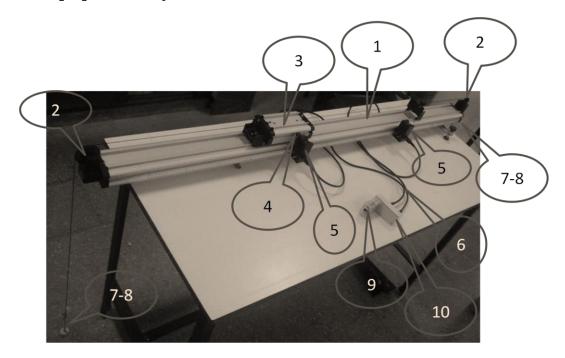
TRABAJO PRÁCTICO Nº 1

Determinación de aceleraciones.

Edición 2019

Departamento de Ciencias Básicas Unidad Docente Básica Física Laboratorio de Física Cátedra: Física **l**

ENSAYO DE LABORATORIO: Determinación de aceleraciones.


CÁTEDRA: Física I

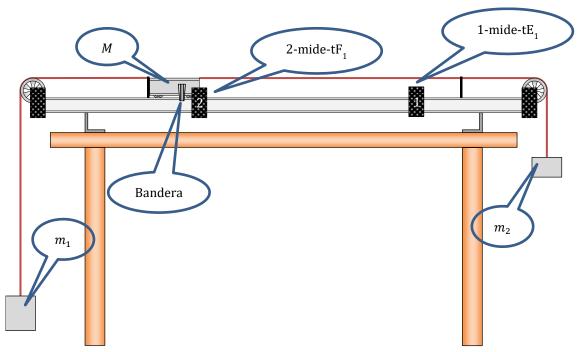
ALUMNO:		 	
COMISIÓN Nº:			
INTEGRANTES	:	 	
-		 	
_			
_		 	

1. Objetivos del Ensayo

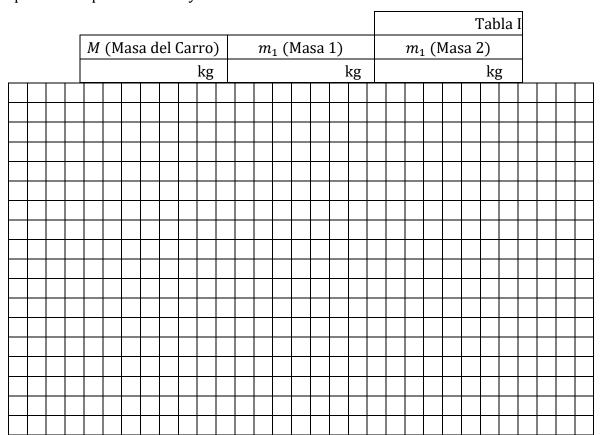
Aplicar a partir de hechos experimentales, las leyes del movimiento.

2. Equipo a Ensayar: Carril.

3. Componentes:


- Un riel de metal de precisión de 1,5 m de longitud (337 130) (1)
- Dos ruedas de radios multiuso (337 464) (2)
- Un carrito. (337 110) (3)
- Una bandera. $\Delta x = 5$ mm (4)
- Dos barreras luminosas multiuso (337 462) (5)
- Dos Cables de conexión, 6 polos (501 16) (6)
- Porta pesas (315 410) (7)
- Pesas (315 418) (8)
- Un Pocket-CASSY (524 006) (9)
- Un CASSY Lab (524 200)
- Una Unidad Timer o Timer S (524 034 o 524 074) (10)
- Una PC.

4. Procedimiento de Ensayo


Objetivo: determinar la aceleración de un sistema compuesto por un carrito sobre un carril y masas suspendidas.

Problema.

En el Laboratorio de Física se monta el dispositivo que se muestra en la siguiente figura. El dispositivo consta de los elementos detallados anteriormente:

Un carrito de masa M unido por medio de una cuerda ideal a dos cuerpos de masas, m_1 y m_2 como muestra la figura. El carrito desliza sobre el riel "sin rozamiento". Resolver el problema aplicando las leyes de Newton.

Preparación de la Experiencia

La determinación experimental de la aceleración se hace en forma indirecta, utilizando las ecuaciones cinemáticas.

Para la adquisición de datos se utiliza el programa Cassy-Lab.

Discusión previa a la realización de la experiencia.

1. Para realizar la experiencia se debe medir los módulos de las velocidades instantáneas v_1 y v_2 , para ello utilizará las barreras luminosas (fotogate)

En la situación planteada ¿Cuál es la dirección y sentido de la velocidad instantánea en A y B? ¿Por qué? la **velocidad instantánea** en cualquier momento se define *como la velocidad promedio durante un intervalo de tiempo infinitesimalmente corto* (1):

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \tag{01 - 01}$$

En nuestra experiencia se adosa al carrito una bandera de espesor Δx (ver figura). La *velocidad promedio*, definida como el *desplazamiento dividido entre el tiempo transcurrido*, puede escribirse como ⁽²⁾

$$\bar{v} = \frac{\Delta x}{\Delta t} \tag{01 - 02}$$

Por consiguiente la velocidad medida se obtendrá de la siguiente formula:

$$\bar{v}_1 = \frac{\Delta x}{\Delta t}$$

$$\bar{v}_2 = \frac{\Delta x}{\Delta t}$$

$$(01 - 03a)$$

$$(01 - 03b)$$

Al determinar experimentalmente esta velocidad, ¿se podrá medir un intervalo de tiempo que tienda a cero?_____

Esta velocidad es una velocidad media ¿se puede aproximar a la velocidad instántanea?

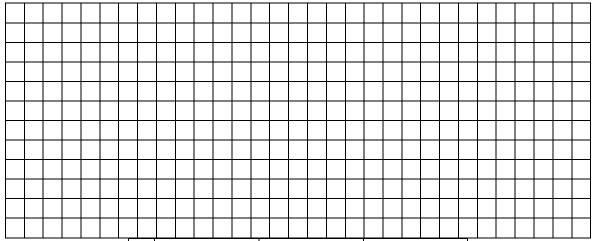
- 2. Utilice los fotogate para tomar los intervalos de tiempos $(tE_1 y tF_1)$ que la bandera tarda en pasar por los puntos (1) y (2).
- 3. Observar los valores y saque conclusiones _____

Los tiempos medidos en (1) y (2) son los Δt de las fórmulas (3), por otra parte el Δx corresponde para los dos puntos 0,005 m.

5. Cálculos, Análisis, Desarrollos, Planillas de Registro, Cálculos.

4. Completar la siguiente tabla, colocando los sensores a una distancia de $0,50\,\mathrm{m}$, siendo n el número de lecturas.

		Tabla II
n	<i>v</i> ₁ [m/s]	<i>v</i> ₂ [m/s]
1		
2		
3		
4		
5		


5. Nos falta solo encontrar el valor numérico de la aclaración del sistema y el Error del Valor Medio.

Nuestros datos son v_1 y v_2 y no medimos el tiempo que trascurre entre los dos sensores. Si tenemos la distancia entre sensores que llamaremos D y es de 50 cm.

Recordemos las ecuaciones cinemáticas:

$$x_{(t)} = x_i + v_i t + \frac{1}{2} a t^2$$

$$v_{(t)} = v_i + a t$$

Dado que es un sistema de dos ecuaciones con dos incógnitas se puede evaluar a.

n	a_i [m/s ²]	$\bar{a} - a_i$	$(\bar{a}-a_i)^2$
1			
2			
3			
4			
5			
	$\bar{a} =$	$\sum (\bar{a} - a_i)^2 =$	

$$Ea = \pm \sqrt{\frac{\sum (\bar{a} - a_i)^2}{n(n-1)}} = \boxed{\frac{m}{s^2}}$$

$$a = \bar{a} \pm Ea$$

$$a = \pm \left[\frac{m}{s^2}\right]$$

_	•		
6.	Conc	lusion	AC.
v.	COHE	lusion	CJ.